Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.960
Filtrar
1.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451873

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that emerged as a pharmacologic target in cardiometabolic disease, including diabetes and obesity, over 30 years ago. The subsequent widespread clinical use of GLP-1R agonists, including exenatide, liraglutide, and semaglutide, has made the GLP-1R a preeminent model for understanding basic GPCR biology, including the emergent field of biased agonism. Recent data demonstrate that the dual GLP-1R/glucose dependent insulinotropic polypeptide receptor (GIPR) agonist tirzepatide exhibits a biased signaling profile characterized by preferential Gαs activation over ß-arrestin recruitment, which appears to contribute to its insulinotropic and body-weight reducing effects in preclinical models. This constitutes a major finding in which nuanced, mechanistic receptor signaling dynamics in vitro mediate real-world clinical differentiation within a drug class. Because of the striking bench-top-to-bed side relevance of this biased signaling phenomenon, we have undertaken a review of the emerging data detailing biased agonism at the GLP-1R. In this review, we introduce the core concept of biased agonism followed by a detailed consideration of the key mechanisms, including ligand-mediated bias, receptor-mediated bias, and systems/cell-type bias. Current industry programs are largely, if not entirely, focused on developing biased ligands, and so we have dedicated a section of the review to a brief meta-analysis of compounds reported to drive biased signaling, with a consideration of the structural determinants of receptor-ligand interactions. In this work, we aim to assess the current knowledge regarding signaling bias at the GLP-1R and how these ideas might be leveraged in future optimization.


Assuntos
Liraglutida , Receptores Acoplados a Proteínas G , Ligantes , Liraglutida/farmacologia , Exenatida/farmacologia , Transdução de Sinais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
2.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477664

RESUMO

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Células Secretoras de Insulina , Animais , Camundongos , Secreção de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Exenatida/farmacologia , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Camundongos Knockout , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia
3.
Eur J Endocrinol ; 190(4): 257-265, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38450721

RESUMO

IMPORTANCE: A major issue in the management of craniopharyngioma-related obesity (CRO) is the ineffectiveness of the current therapeutic approaches. OBJECTIVE: To study the efficacy of glucagon-like peptide-1 analogs compared with placebo in adults with obesity CRO. DESIGN: A double-blind multicenter superiority randomized clinical in trial in two parallel arms. SETTING: Eleven French University Hospital Centers. PARTICIPANTS: Adults with CRO (body mass index > 30 kg/m²) without the sign of recurrence of craniopharyngioma in the past year. INTERVENTIONS: Exenatide or placebo injected subcutaneously twice a day during 26 weeks. MAIN OUTCOMES AND MEASURES: The primary outcome was the mean change in body weight at week 26 in the intention-to-treat population. Secondary outcomes were eating behavior, calories intake, energy expenditure, cardiovascular, metabolic risk factor, quality of life, and the tolerance profile. RESULTS: At week 26, weight decreased from baseline by a mean of -3.8 (SD 4.3) kg for exenatide and -1.6 (3.8) kg for placebo. The adjusted mean treatment difference was -3.1 kg (95% confidence interval [CI] -7.0 to 0.7, P = 0.11). Results were compatible with a higher reduction of hunger score with exenatide compared with placebo (estimated treatment difference in change from baseline to week 26: -2.3, 95% CI -4.5 to -0.2), while all other outcomes did not significantly differ between groups. Adverse events were more common with exenatide versus placebo, and occurred in, respectively, 19 (95%) participants (108 events) and 14 (70%) participants (54 events). CONCLUSIONS AND RELEVANCE: Combined with intensive lifestyle interventions, a 26-week treatment with exenatide was not demonstrated superior to placebo to treat craniopharyngioma-related obesity.


Assuntos
Craniofaringioma , Neoplasias Hipofisárias , Adulto , Humanos , Exenatida/uso terapêutico , Hipoglicemiantes/uso terapêutico , Qualidade de Vida , Craniofaringioma/complicações , Craniofaringioma/tratamento farmacológico , Obesidade/tratamento farmacológico , Redução de Peso , Comportamento Alimentar , Neoplasias Hipofisárias/tratamento farmacológico , Método Duplo-Cego
4.
Diabetes Care ; 47(4): 712-719, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363873

RESUMO

OBJECTIVE: To assess risk of anaphylaxis among patients with type 2 diabetes mellitus who are initiating therapy with a glucagon-like peptide 1 receptor agonist (GLP-1 RA), with a focus on those starting lixisenatide therapy. RESEARCH DESIGN AND METHODS: A cohort study was conducted in three large, U.S. claims databases (2017-2021). Adult (aged ≥18 years) new users of a GLP-1 RA who had type 2 diabetes mellitus and ≥6 months enrollment in the database before GLP-1 RA initiation (start of follow-up) were included. GLP-1 RAs evaluated were lixisenatide, an insulin glargine/lixisenatide fixed-ratio combination (FRC), exenatide, liraglutide or insulin degludec/liraglutide FRC, dulaglutide, and semaglutide (injectable and oral). The first anaphylaxis event during follow-up was identified using a validated algorithm. Incidence rates (IRs) and 95% CIs were calculated within each medication cohort. The unadjusted IR ratio (IRR) comparing anaphylaxis rates in the lixisenatide cohort with all other GLP-1 RAs combined was analyzed post hoc. RESULTS: There were 696,089 new users with 456,612 person-years of exposure to GLP-1 RAs. Baseline demographics, comorbidities, and use of other prescription medications in the 6 months before the index date were similar across medication cohorts. IRs (95% CIs) per 10,000 person-years were 1.0 (0.0-5.6) for lixisenatide, 6.0 (3.6-9.4) for exenatide, 5.1 (3.7-7.0) for liraglutide, 3.9 (3.1-4.8) for dulaglutide, and 3.6 (2.6-4.9) for semaglutide. The IRR (95% CI) for the anaphylaxis rate for the lixisenatide cohort compared with the pooled other GLP-1 RA cohort was 0.24 (0.01-1.35). CONCLUSIONS: Anaphylaxis is rare with GLP-1 RAs. Lixisenatide is unlikely to confer higher risk of anaphylaxis than other GLP-1 RAs.


Assuntos
Anafilaxia , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Adolescente , Exenatida/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Liraglutida/efeitos adversos , 60650 , Estudos de Coortes , Anafilaxia/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
5.
Physiol Behav ; 276: 114484, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331374

RESUMO

It is well documented that estrogens inhibit fluid intake. Most of this research, however, has focused on fluid intake in response to dipsogenic hormone and/or drug treatments in euhydrated rats. Additional research is needed to fully characterize the fluid intake effects of estradiol in response to true hypovolemia. As such, the goals of this series of experiments were to provide a detailed analysis of water intake in response to water deprivation in ovariectomized female rats treated with estradiol. In addition, these experiments also tested if activation of estrogen receptor alpha is sufficient to reduce water intake stimulated by water deprivation and tested for a role of glucagon like peptide-1 in the estrogenic control of water intake. As expected, estradiol reduced water intake in response to 24 and 48 h of water deprivation. The reduction in water intake was associated with a reduction in drinking burst number, with no change in drinking burst size. Pharmacological activation of estrogen receptor alpha reduced intake. Finally, estradiol-treatment caused a leftward shift in the behavioral dose response curve of exendin-4, the glucagon like peptide-1 agonist. While the highest dose of exendin-4 reduced 10 min intake in both oil and estradiol-treated rats, the intermediate dose only reduced intake in rats treated with estradiol. Together, this series of experiments extends previous research by providing a more thorough behavioral analysis of the anti-dipsogenic effect of estradiol in dehydrated rats, in addition to identifying the glucagon like peptide-1 system as a potential bioregulator involved in the underlying mechanisms by which estradiol reduces water intake in the female rat.


Assuntos
Ingestão de Líquidos , Peptídeo 1 Semelhante ao Glucagon , Animais , Feminino , Ratos , Desidratação , Ingestão de Líquidos/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Fatores de Transcrição
6.
Obes Rev ; 25(5): e13704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355887

RESUMO

This systematic review and meta-analysis evaluated the efficacy of anti-obesity agents for hormonal, reproductive, metabolic, and psychological outcomes in polycystic ovary syndrome (PCOS) to inform the 2023 update of the International Evidence-based Guideline on PCOS. We searched Medline, EMBASE, PsycInfo, and CINAHL until July 2022 with a 10-year limit to focus on newer agents. Eleven trials (545 and 451 participants in intervention and control arms respectively, 12 comparisons) were included. On descriptive analyses, most agents improved anthropometric outcomes; liraglutide, semaglutide and orlistat appeared superior to placebo for anthropometric outcomes. Meta-analyses were possible for two comparisons (exenatide vs. metformin and orlistat + combined oral contraceptive pill [COCP] vs. COCP alone). On meta-analysis, no differences were identified between exenatide versus metformin for anthropometric, biochemical hyperandrogenism, and metabolic outcomes, other than lower fasting blood glucose more with metformin than exenatide (MD: 0.10 mmol/L, CI 0.02-0.17, I2 = 18%, 2 trials). Orlistat + COCP did not improve metabolic outcomes compared with COCP alone (fasting insulin MD: -8.65 pmol/L, -33.55 to 16.26, I2 = 67%, 2 trials). Published data examining the effects of anti-obesity agents in women with PCOS are very limited. The role of these agents in PCOS should be a high priority for future research.


Assuntos
Fármacos Antiobesidade , Metformina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Fármacos Antiobesidade/uso terapêutico , Anticoncepcionais Orais Combinados/uso terapêutico , Orlistate/uso terapêutico , Exenatida/uso terapêutico , Metformina/uso terapêutico , Hipoglicemiantes/uso terapêutico
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354757

RESUMO

Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Humanos , Exenatida/farmacologia , Exenatida/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , 60650 , Nefropatias Diabéticas/patologia , Metabolismo dos Lipídeos , Ácidos Graxos , Lipídeos
8.
Pediatr Obes ; 19(5): e13105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339799

RESUMO

INTRODUCTION: Whilst glucagon-like peptide-1 receptor agonists (GLP1-RAs) are effective for treating adolescent obesity, weight loss maintenance (WLM; preventing weight regain) remains a challenge. Our goal was to investigate appetite/satiety hormones and eating behaviours that may predict WLM with exenatide (a GLP1-RA) versus placebo in adolescents with severe obesity. METHODS: Adolescents who had ≥5% body mass index (BMI) reduction with meal replacement therapy were randomized to 52 weeks of once-weekly exenatide extended release or placebo. In this secondary analysis, eating behaviours and appetite/satiety regulation hormones post-meal replacement therapy (pre-randomization to exenatide or placebo) were evaluated as possible predictors of WLM. Percent change in BMI from randomization to 52 weeks served as the primary measure of WLM. RESULTS: The analysis included 66 adolescents (mean age 16.0 years; 47% female). Lower leptin response to meal testing was associated with greater WLM in terms of BMI percent change in those receiving exenatide compared to placebo (p = 0.007) after adjusting for sex, age and BMI. There were no other significant predictors of WLM. CONCLUSIONS: Prior to exenatide, lower leptin response to meals was associated with improved WLM with exenatide compared to placebo. The mostly null findings of this study suggest that GLP1-RA treatment may produce similar WLM for adolescents with obesity regardless of age, BMI, sex and eating behaviours.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Obesidade Pediátrica , Adolescente , Humanos , Feminino , Masculino , Obesidade Mórbida/tratamento farmacológico , Exenatida/uso terapêutico , Leptina , Apetite , Obesidade Pediátrica/tratamento farmacológico , Redução de Peso , Comportamento Alimentar , Hipoglicemiantes , Diabetes Mellitus Tipo 2/tratamento farmacológico
9.
Eur J Pharmacol ; 968: 176419, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38360293

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with ß-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in ß-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated ß-arrestin 1/2 recruitment for diverse ligands, and ß-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased ß-arrestin 1 recruitment but increased ß-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected ß-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in ß-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive ß-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in ß-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in ß-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on ß-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without ß-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and ß-arrestins. Our study offers valuable information about ligand induced ß-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , beta-Arrestina 1/metabolismo , Exenatida/farmacologia , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Ligantes , Oxintomodulina/farmacologia , Proteômica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , beta-Arrestinas/metabolismo
10.
Eur J Pharm Sci ; 195: 106718, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316168

RESUMO

To ensure therapeutic equivalence between the long-acting injectable (LAI) products, additional PK metrics other than Cmax and AUC were considered necessary. However, regarding the selection of additional PK metrics for bioequivalence (BE) assessment of exenatide LAI, a discrepancy existed between EMA's and USFDA's product-specific guidance. The EMA recommends that both the maximum plasma concentration in the initial-release phase (Cmax,1) and the extended-release phase (Cmax,2) should be determined. Nevertheless, the USFDA recommends the use of the partial area under the curve (i.e., the area under the curve from week 4 to the last sampling point; pAUC4w-t). The focus of this study was to compare the sensitivity of different PK metrics, including Cmax,1, Cmax,2, pAUC4w-t, early and late pAUC metrics truncated at different time points (three, four, five, six and seven weeks), to formulation-related parameters and pharmacodynamic (PD) markers of glycemic control. A sensitivity analysis was conducted using the published PK/PD model of exenatide LAI. The results indicated that Cmax,1 and Cmax,2 exhibited comparable sensitivities. AUC4w-t was sensitive to changes in detecting the differences in formulation-related parameters and PD markers of glycemic control, but did not provide superior sensitivity performance compared to Cmax,1 and Cmax,2. Among all tested PK metrics, AUC7w-t was found to be the most sensitive. The optimal cut-off time point for the pAUC should be set at the time of maximum plasma concentration in the extended-release phase (approximately 6-7 weeks). These results may provide useful insights into the selection of appropriate PK metrics for BE determination of exenatide LAI.


Assuntos
Equivalência Terapêutica , Estados Unidos , Exenatida , United States Food and Drug Administration , Área Sob a Curva , Estudos Cross-Over
11.
Chem Biol Drug Des ; 103(1): e14426, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230775

RESUMO

Neurodegenerative disorders, which affect millions worldwide, are marked by a steady decline of neurons that are selectively susceptible. Due to the complex pathological processes underlying neurodegeneration, at present, there is no viable therapy available for neurodegenerative disorders. Consequently, the establishment of a novel therapeutic approach for such conditions is a clinical void that remains. The potential significance of various peptides as neuroprotective interventions for neurodegenerative disorders is gaining increasing attention. In the past few years, there has been growing scientific interest in glucagon-like peptide-1 receptor agonists due to their claimed neuroprotective effects. Exendin-4 is a glucagon-like peptide-1 receptor agonist that is known to possess anti-diabetic effects and does not degrade for hours, making it a superior candidate for such disorders. Moreover, exendin-4's neuroprotective effects have been reported in several preclinical studies. Exendin-4's diverse therapeutic targets suggest its potential therapeutic uses in neurodegenerative ailments like Alzheimer's disease and Parkinson's disease and have garnered an increasing amount of attention. Given the substantial body of evidence supporting the neuroprotective potential of exendin-4 in various research models, this article is dedicated to exploring the promising role of exendin-4 as a therapeutic agent for the treatment and management of Alzheimer's disease and Parkinson's disease. This review draws insights from the findings of numerous preclinical and clinical studies to highlight the collective neuroprotective advantages of exendin-4 and the potential mechanisms that underlie its neuroprotective effects.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Exenatida/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico
12.
J Pak Med Assoc ; 74(1): 138-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219182

RESUMO

The aim of the study was to investigate th e in flue nce of Exenatide comb ined with Met formin on fasti ng blood glucose, postpr andial glucose, triglycerides, total cholesterol, alanine aminotransferase, aspartate aminotransferase, and inte s tinal flora in typ e 2 diab etes mellitus cases with non-alcoholic fatty liver disease. A total of 128 type 2 diabetes mellitus patients with non-alcoholic fatty liver disease, diagnosed from Januar y 2019 to January 2022, were included and randomly assigned to either G roup A (n=64) or Gro up B (n =64). Group A received Metformin, while Group B received Exenatide injection and Metfor min. After 24 weeks of treat ment, blood glucose indices (fasting blood glucose and postprandial glucose), blood lipid indices (triglycerides and total cholesterol), liver func tion indices (alanine aminotransferase and aspar tate aminotransferase) were all lower in Group B than in Group A (p<0.001 for all). Counts o f Escherichia coli and Enterococcus faecalis were lower in Group B than in Group A (both p<0.05), counts of Bifidobacteria and Lactobacillus were highe r i n Group B than in Grou p A (both p<0.05). Combin ation of Exenati de and Metformi n may have synergistic effects in improving metabo lic an d hepatic pa rameters, a s well as re gulat ing intestinal flora, which cou ld provide a pro misin g therapeutic option for the management of these patients.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Hepatopatia Gordurosa não Alcoólica , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/uso terapêutico , Exenatida/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Glicemia , Fígado , Triglicerídeos , Colesterol , Transaminases/uso terapêutico , Hipoglicemiantes/uso terapêutico
13.
Diabetes Metab J ; 48(1): 83-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38173373

RESUMO

BACKGRUOUND: Glucagon-like peptide-1 receptor agonist (GLP-1RA), which is a therapeutic agent for the treatment of type 2 diabetes mellitus, has a beneficial effect on the cardiovascular system. METHODS: To examine the protective effects of GLP-1RAs on proliferation and migration of vascular smooth muscle cells (VSMCs), A-10 cells exposed to angiotensin II (Ang II) were treated with either exendin-4, liraglutide, or dulaglutide. To examine the effects of GLP-1RAs on vascular calcification, cells exposed to high concentration of inorganic phosphate (Pi) were treated with exendin-4, liraglutide, or dulaglutide. RESULTS: Ang II increased proliferation and migration of VSMCs, gene expression levels of Ang II receptors AT1 and AT2, proliferation marker of proliferation Ki-67 (Mki-67), proliferating cell nuclear antigen (Pcna), and cyclin D1 (Ccnd1), and the protein expression levels of phospho-extracellular signal-regulated kinase (p-Erk), phospho-c-JUN N-terminal kinase (p-JNK), and phospho-phosphatidylinositol 3-kinase (p-Pi3k). Exendin-4, liraglutide, and dulaglutide significantly decreased the proliferation and migration of VSMCs, the gene expression levels of Pcna, and the protein expression levels of p-Erk and p-JNK in the Ang II-treated VSMCs. Erk inhibitor PD98059 and JNK inhibitor SP600125 decreased the protein expression levels of Pcna and Ccnd1 and proliferation of VSMCs. Inhibition of GLP-1R by siRNA reversed the reduction of the protein expression levels of p-Erk and p-JNK by exendin-4, liraglutide, and dulaglutide in the Ang II-treated VSMCs. Moreover, GLP-1 (9-36) amide also decreased the proliferation and migration of the Ang II-treated VSMCs. In addition, these GLP-1RAs decreased calcium deposition by inhibiting activating transcription factor 4 (Atf4) in Pi-treated VSMCs. CONCLUSION: These data show that GLP-1RAs ameliorate aberrant proliferation and migration in VSMCs through both GLP-1Rdependent and independent pathways and inhibit Pi-induced vascular calcification.


Assuntos
Diabetes Mellitus Tipo 2 , Calcificação Vascular , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Exenatida/farmacologia , Liraglutida/farmacologia , Músculo Liso Vascular/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Receptores de Peptídeos Semelhantes ao Glucagon , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatos/metabolismo , Fosfatos/farmacologia , Proliferação de Células , Calcificação Vascular/metabolismo
14.
Diabetes Obes Metab ; 26(4): 1395-1406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287130

RESUMO

AIM: Novel long-acting drugs for type 2 diabetes mellitus may optimize patient compliance and glycaemic control. Exendin-4-IgG4-Fc (E4F4) is a long-acting glucagon-like peptide-1 receptor agonist. This first-in-human study investigated the safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of a single subcutaneous injection of E4F4 in healthy subjects. METHODS: This single-centre, randomized, double-blind, placebo-controlled phase 1 clinical trial included 96 subjects in 10 sequential cohorts that were provided successively higher doses of E4F4 (0.45, 0.9, 1.8, 3.15, 4.5, 6.3, 8.1, 10.35, 12.6 and 14.85 mg) or placebo (ChinaDrugTrials.org.cn: ChiCTR2100049732). The primary endpoint was safety and tolerability of E4F4. Secondary endpoints were pharmacokinetic, pharmacodynamic and immunogenicity profiles of E4F4. Safety data to day 15 after the final subject in a cohort had been dosed were reviewed before commencing the next dose level. RESULTS: E4F4 was safe and well tolerated among healthy Chinese participants in this study. There was no obvious dose-dependent relationship between frequency, severity or causality of treatment-emergent adverse events. Cmax and area under the curve of E4F4 were dose proportional over the 0.45-14.85 mg dose range. Median Tmax and t1/2 ranged from 146 to 210 h and 199 to 252 h, respectively, across E4F4 doses, with no dose-dependent trends. For the intravenous glucose tolerance test, area under the curve of glucose in plasma from time 0 to 180 min showed a dose-response relationship in the 1.8-10.35 mg dose range, with an increased response at the higher doses. CONCLUSION: E4F4 exhibited an acceptable safety profile and linear pharmacokinetics in healthy subjects. The recommended phase 2 dose is 4.5-10.35 mg once every 2 weeks.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida/efeitos adversos , Voluntários Saudáveis , Área Sob a Curva , Teste de Tolerância a Glucose , Método Duplo-Cego , Relação Dose-Resposta a Droga
15.
Expert Opin Drug Deliv ; 21(1): 169-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38224039

RESUMO

BACKGROUND: Exendin-4 (Ex4) is a promising drug for diabetes mellitus with a half-life of 2.4 h in human bodies. Besides, the Ex4 formulations currently employed in the clinic or under development have problems pertaining to stability. In this study, palmitic acid-modified Ex4 (Pal-Ex4) was prepared and purified to extend the half-life of Ex4. In addition, Pal-Ex4-MVLs were further designed and optimized as a long-acting delivery system for intramuscular injection. METHODS: Pal-Ex4 was encapsulated within multivesicular liposomes (MVLs) via a two-step double emulsification process. The formulated products were then assessed for their vesicle size, encapsulation efficiency, and in vitro and in vivo. RESULTS: Pal-Ex4-MVLs with a notable encapsulation efficiency of 99.18% were successfully prepared. Pal-Ex4-MVLs, administered via a single intramuscular injection in Sprague-Dawley rats, sustained stable plasma concentrations for 168 h, presenting extended half-life (77.28 ± 12.919 h) and enhanced relative bioavailability (664.18%). MVLs protected Ex4 through providing stable retention and slow release. This approach considerably improved the in-situ stability of the drug for intramuscular administration. CONCLUSIONS: The combination of palmitic acid modification process with MVLs provides dual protection for Ex4 and can be a promising strategy for other hydrophilic protein/polypeptide-loaded sustained-release delivery systems with high drug bioactivity.


Assuntos
Lipossomos , Ácido Palmítico , Ratos , Animais , Humanos , Exenatida , Injeções Intramusculares , Preparações de Ação Retardada , Ratos Sprague-Dawley
16.
Neurosci Res ; 199: 48-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37595875

RESUMO

The central neuropeptide GLP-1 is synthesized by preproglucagon (PPG) neurons in the brain. GLP-1 receptors are widely distributed in central nervous system. Hippocampus is a key component of the limbic system which is involved in learning, memory, and cognition. Previous studies have shown that overexpression of GLP-1 receptors in the hippocampus could improve the process of learning and memory. However, up to now, the direct electrophysiological effects and possible molecular mechanisms of GLP-1 in hippocampal CAl neurons remain unexplored. The present study aims to evaluate the effects and mechanisms of GLP-1 on the spontaneous firing activity of hippocampal CAl neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micro-pressure administration of GLP-1 receptor agonist, exendin-4, significantly increased the spontaneous firing rate of hippocampal CA1 neurons in rats. Furthermore, application of the specific GLP-1 receptor antagonist, exendin(9-39), alone significantly decreased the firing rate of CA1 neurons, suggesting that endogenous GLP-1 modulates the firing activity of CA1 neurons. Co-application of exendin(9-39) completely blocked exendin-4-induced excitation of hippocampal CA1 neurons. Finally, the present study demonstrated for the first time that the transient receptor potential canonical 4 (TRPC4)/TRPC5 channels may be involved in exendin-4-induced excitation. The present studies may provide a rationale for further investigation of the modulation of GLP-1 on learning and memory as well as its possible involvement in Alzheimer's disease.


Assuntos
Hipocampo , Neuropeptídeos , Ratos , Animais , Exenatida/farmacologia , Neurônios/fisiologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia
17.
Diabetes Res Clin Pract ; 207: 111045, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070546

RESUMO

AIMS: To describe the effect of three classes of GLP1 analogues on HbA1c and weight over one year in a homogenous group of patients at the Dubai Diabetes Center in Dubai, United Arab Emirates. The specific objectives are to study the extent of change in HbA1c and weight loss on these medications as well as the sustainability of change over one year. METHODS: A retrospective audit of patients diagnosed Type 2 diabetes receiving one of the three following GLP-1 agonists (Exenatide LA 2 mg weekly, liraglutide 1.8 mg once daily, Dulaglutide 1.5 mg) over one year and documenting changes in HbA1c and weight at 3-, 6-, 9-, and 12-months intervals. RESULTS: The study shows that while there was significant reduction in HbA1c and weight in the first 3 months, this change was not clinically significant. Also, the change was not maintained at the end of the year. By the final quarter, the effect of the medication diminishes, accompanied by a partial regain of weight. CONCLUSION: GLP1 agonists favorable initial effect on HbA1c and weight may not be sustainable beyond a certain period. The exact reason and factors contributing to this need further exploration.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida/farmacologia , Exenatida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hemoglobinas Glicadas , Controle Glicêmico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Estudos Retrospectivos , Emirados Árabes Unidos/epidemiologia , Redução de Peso
18.
Cell Metab ; 36(1): 130-143.e5, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113888

RESUMO

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here, we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-α) by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads to reduced TNF-α via α1-adrenergic, δ-opioid, and κ-opioid receptor signaling. These data extend emerging concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Sepse , Humanos , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos/farmacologia , 60703 , Peçonhas/farmacologia , Fator de Necrose Tumoral alfa , Inflamação , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
19.
Lancet Neurol ; 23(1): 37-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101901

RESUMO

BACKGROUND: Converging lines of evidence suggest that microglia are relevant to Parkinson's disease pathogenesis, justifying exploration of therapeutic agents thought to attenuate pathogenic microglial function. We sought to test the safety and efficacy of NLY01-a brain-penetrant, pegylated, longer-lasting version of exenatide (a glucagon-like peptide-1 receptor agonist) that is believed to be anti-inflammatory via reduction of microglia activation-in Parkinson's disease. METHODS: We report a 36-week, randomised, double-blind, placebo-controlled study of NLY01 in participants with early untreated Parkinson's disease conducted at 58 movement disorder clinics in the USA. Participants meeting UK Brain Bank or Movement Disorder Society research criteria for Parkinson's disease were randomly allocated (1:1:1) to one of two active treatment groups (2·5 mg or 5·0 mg NLY01) or matching placebo, based on a central computer-generated randomisation scheme using permuted block randomisation with varying block sizes. All participants, investigators, coordinators, study staff, and sponsor personnel were masked to treatment assignments throughout the study. The primary efficacy endpoint for the primary analysis population (defined as all randomly assigned participants who received at least one dose of study drug) was change from baseline to week 36 in the sum of Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III. Safety was assessed in the safety population (all randomly allocated participants who received at least one dose of the study drug) with documentation of adverse events, vital signs, electrocardiograms, clinical laboratory assessments, physical examination, and scales for suicidality, sleepiness, impulsivity, and depression. This trial is complete and registered at ClinicalTrials.gov, NCT04154072. FINDINGS: The study took place between Jan 28, 2020, and Feb 16, 2023. 447 individuals were screened, of whom 255 eligible participants were randomly assigned (85 to each study group). One patient assigned to placebo did not receive study treatment and was not included in the primary analysis. At 36 weeks, 2·5 mg and 5·0 mg NLY01 did not differ from placebo with respect to change in sum scores on MDS-UPDRS parts II and III: difference versus placebo -0·39 (95% CI -2·96 to 2·18; p=0·77) for 2·5 mg and 0·36 (-2·28 to 3·00; p=0·79) for 5·0 mg. Treatment-emergent adverse events were similar across groups (reported in 71 [84%] of 85 patients on 2·5 mg NLY01, 79 [93%] of 85 on 5·0 mg, and 73 [87%] of 84 on placebo), with gastrointestinal disorders the most commonly observed class in active groups (52 [61%] for 2·5 mg, 64 [75%] for 5·0 mg, and 30 [36%] for placebo) and nausea the most common event overall (33 [39%] for 2·5 mg, 49 [58%] for 5·0 mg, and 16 [19%] for placebo). No deaths occurred during the study. INTERPRETATION: NLY01 at 2·5 and 5·0 mg was not associated with any improvement in Parkinson's disease motor or non-motor features compared with placebo. A subgroup analysis raised the possibility of motor benefit in younger participants. Further study is needed to determine whether these exploratory observations are replicable. FUNDING: D&D Pharmatech-Neuraly.


Assuntos
Exenatida , 60650 , Doença de Parkinson , Humanos , Método Duplo-Cego , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/complicações , Resultado do Tratamento , Exenatida/análogos & derivados , Exenatida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , 60650/uso terapêutico
20.
Diabetes Obes Metab ; 26(1): 329-338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818589

RESUMO

AIM: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.


Assuntos
Glucagon , Hipoglicemiantes , Camundongos , Animais , Exenatida , Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Insulina/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Glucose , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...